
Searchable Encryption
New Constructions of Encrypted Databases

Raphael Bost - 8/01/2017Slides at https://r.bost.fyi/phd

https://r.bost.fyi/phd

Searchable Encryption
Outsource data

Securely

Keep search functionalities

Aimed at efficiency

… we have to leak some information …

… and this can lead to devastating attacks

An example: property
preserving encryption

Deterministic encryption, Order Preserving Encryption

✓ Legacy compatible (works on top of unencrypted DB)

✓ Very efficient

✗ Not secure in practice (frequency analysis)

Client

Security of SE
Everything the server learns can be computed from the leakage

Adversary

Client

Security of SE
Everything the server learns can be computed from the leakage

Adversary

Security of SE
Everything the server learns can be computed from the leakage

Simulator

LeakageReal Client Adversary

Simulator

Security of SE
Everything the server learns can be computed from the leakage

LeakageReal Client Adversary

Leakage

Simulator

Security of SE
Everything the server learns can be computed from the leakage

Real Client Adversary

? ? ?

 Ideal World

Examples of leakage

After a search, the user will access the matching
documents. This will reveal the search result.

When the user searches for the same keyword twice,
the server might learn that the query has been
repeated.

In both cases, trying to get rid of this leakage is
expensive

An explicit tradeoff between
security and performance

Oblivious RAM lower bound: if one wants to hide the
access pattern to a memory of size N, the
computational overhead is 
 

A similar lower bound exists for searchable encryption:
a search pattern-hiding SE incurs a search overhead of

Ω
(
logN
logσ

)

⌦

✓
log (|DB |

nw
)

log�

◆

Constructing encrypted
databases

w D2D1 D3 D4 D5 D6Kw

Client

Server

w’ Kw’

Client

Server

D’2D’1 D’3 D’4 D’5

w Kw

Client

Server

D2 D1 D3 D4D5D6

D2 D6 D1 D3 D5 D4

w Kw

Client

Server

D7

Kw
I know that w was

updated !

D7

File injection attacks [ZKP’16]

Insert purposely crafted documents in the DB  
(e.g. spam for encrypted emails)

log |W| injected documents

D1 w1 w2 w3 w4 w5 w6 w7 w8

D2 w1 w2 w3 w4 w5 w6 w7 w8

D3 w1 w2 w3 w4 w5 w6 w7 w8

K

Active adaptive attacks
These adaptive attacks use the update leakage

We need SE schemes with oblivious updates

Forward Privacy

Forward privacy
Forward private: an update does not leak any information

Secure online build of the EDB

Only one scheme existed so far [SPS’14]

➡ ORAM-like construction

✗ Inefficient updates

✗ Large client storage

How to achieve forward
privacy efficiently?

ST

…

ST’

ST1 STn+1ST2 STn…

UTn+1UT1 UT2 UTn…

H(.)

H(.)

H(.)

H(.)

ST1 STn+1ST2 STn…

UTn+1UT1 UT2 UTn…

H(.)

H(.)

H(.)

H(.)

Naïve solution: STi(w) = F(Kw,i), send all STi(w)’s

✗ Client needs to send n tokens

Use a trapdoor permutation  
(client has the secret key, server has the public key,
and cannot compute the inverse)

πPK πPK πPK πPK

π-1SK π-1SK π-1SK π-1SK

ST1 STn+1ST2 STn…

UTn+1UT1 UT2 UTn…

π-1SK π-1SK π-1SK π-1SK

πPK πPK πPK πPK

H(.)

H(.)

H(.)

H(.)

Search:
Client: constant
Server: # results

Update:
Client: constant
Server: constant

Optimal

ST1 STn+1ST2 STn…

UTn+1UT1 UT2 UTn…

π-1SK π-1SK π-1SK π-1SK

πPK πPK πPK πPK

H(.)

H(.)

H(.)

H(.)

Storage:
Client: # distinct keywords
Server: # database entries

Σoφoς

Forward private index-based scheme

Very simple

Efficient search (IO bounded)

Asymptotically efficient update
In practice, very low update throughput  
4300 updates/s — 20x slower than other work

Another path towards
forward privacy

ST

…

ST’

ST

…

ST’

Constrained PRF
Can we restrict the evaluation of F(Kw,.) on [1,n]?

K Evaluation F(K,x)

x

Constrained PRF
Can we restrict the evaluation of F(Kw,.) on [1,n]?

K Evaluation

x

F(K,x)

Constrain

C

KC

🚫

C(x) = true

C(x) = false

Range-Constrained PRF

Consider the condition Cn:

Cn(x) = true if and only if 1≤ x ≤ n (range condition)

Kn = Constrain(K,Cn) can only be used to  
evaluate F on [1,n]

w Kw

Client

Server

D2 D1 D3 D4D5D6

Kw6
Constrain

D2 D6 D1 D3 D5 D4

w Kw

Client

Server Kw6

D7

D7 D8Kw8
Constrain

D8

Diana
Instantiate the CPRF F with a tree-based
PRF construction

Asymptotically less efficient than Σoφoς

In practice, a lot better. Always IO bounded
(for both searches and updates)

Search: <1µs per match (on RAM)  
Update: 174 000 entries per second  
 (4300 for Σoφoς)

Can we do better?

Similarly to the ORAM lower bound, we can show that
the computational overhead of an update for a
forward-private scheme is 

Σoφoς is optimal (constant-time update, σ = |W|)

⌦
⇣
log |W |
log�

⌘

Deletions

Deletions

How to delete entries in an encrypted database?

Existing schemes use a ‘revocation list’

Pb: the deleted information is still revealed to the server

Backward privacy: ‘nothing’ is leaked about the
deleted documents

Backward privacy

Baseline: the client fetches the encrypted lists of inserted
and deleted documents, locally decrypts and retrieves
the documents.
✓ Optimal security
✗ 2 interactions
✗ Complexity (communication & computation) :  

 # insertions (vs. # results)

Backward privacy with
optimal updates & comm.
Could we prevent the server from decrypting some
entries?

Puncturable Encryption [GM’15]: Revocation of
decryption capabilities for specific messages

K Encrypt

D T

T

Backward privacy with
optimal updates & comm.
Could we prevent the server from decrypting some
entries?

Puncturable Encryption [GM’15]: Revocation of
decryption capabilities for specific messages

K Puncture

T

Puncture

T’

K T K T T’

Backward privacy with
optimal updates & comm.

DecryptK T T’

 T’’

D Decrypt 🚫

T

Could we prevent the server from decrypting some
entries?

Puncturable Encryption [GM’15]: Revocation of
decryption capabilities for specific messages

same tag

K T T’

≠ tags

Client

Server

Σ  
Client

Σ  
Server

w

Kw Add to wTEncrypt

D T

Hash

Insertion

Hash

Deletion
Client

Server

Σ  
Client

Σ  
Server

w

Kw Puncture

D T

Kw T

Hash

Deletion
Client

Server

Σ  
Client

Σ  
Server

w

Puncture

D’ T’

Kw T Kw T T’

🚫D1D2D4D5D6D8🚫

T1 T2 T3 T4 T5 T6 T7 T8

Search w

Search
Client

Server
Σ  

Server

w Kw T7 T3
Σ  

Client

Decrypt

Janus

Not so good:

✗O(nw.dw) search comp.

✗Uses pairings (not fast)

Good:

✓Forward & backward-private

✓Optimal update complexity

✓Optimal communication

Implementation of SE

Client Server gRPC

Σoφoς Diana Janus RocksDB

PRF Hash TDPEnc. …
libsodium 
mbedTLS

Relic

OpenSSE

Goal: fast and secure implementation of SE schemes

10 700 C/C++ LoC (crypto: 6500, schemes: 4200)

Open Source: opensse.github.io

And its documented !!! (at least for the crypto)

https://opensse.github.io

Other works on searchable
encryption

Verifiable SSE: check that the results returned by the
server are correct. Constructions and lower bounds

Analysis of recent attacks (leakage-abuse attacks) that
only use the leakage to break the security of schemes.
Proposed countermeasures.

Conclusion
Forward privacy

Updates do not leak information about the past
events
Two efficient constructions Σoφoς and Diana

Backward privacy
Deletions are not recoverable by the server
Janus: backward privacy with optimal
communication

Conclusion

SE involves very diverse topics: theoretical CS,
cryptanalysis, cryptographic primitives, systems, …

Real world cryptography, with great impact

Publications
Searchable Encryption:

[B Fouque Pointcheval - ePrint 16]: Verifiable Dynamic Symmetric Searchable Encryption:
Optimality and Forward Security

[B - CCS 16]: Σoφoς: Forward Secure Searchable Encryption

[B Minaud Ohrimenko - CCS 17]: Forward and Backward Private Searchable Encryption from
Constrained Cryptographic Primitives

[B Fouque - ePrint 17]: Thwarting Leakage Abuse Attacks against Searchable Encryption – A
Formal Approach and Applications to Database Padding

Other:

[B Popa Tu Goldwasser - NDSS 15]: Machine Learning Classification over Encrypted Data.

[B Sanders - AsiaCrypt 16]: Trick or Tweak: On the (In)security of OTR’s Tweaks

Verifiable SE
The server might be malicious: return fake results,
delete real results, …

The client needs to verify the results

Verifiable SE
This is not free: lower bound (derived from [DNRV’09])

If client storage is less than |W|1-ε, search complexity
has to be larger than log |W|

The lower bound is tight: using Merkle hash trees and
set hash functions

Many possible tradeoffs between search & update
complexities

������

�����

����

���

��� ���� ����� ������ �����

��
��
��

���
�
��
��

��
��
��
�
��
���

��
��

������ �� �������� ���������

��������� � � � ����� ���� ���
��������� � � � ����� ��� ���

����� ������������ � � � ����� ����� ���

Diana (
Diana (

)
)

Crypto vs. Seek time

The magic world of searchable encryption:

Symmetric crypto is free

Asymmetric crypto is not overly expensive

A lot of the cost comes from the non-locality of
memory accesses

Locality vs. Caching

The OS is ‘smart’: it caches memory.

Be careful when you are testing your construction on
small databases

Once the database is cached, non locality disappears

Beware of the evaluation of performance

Evaluating the security

Use the leakage function from the security definitions
✓ Provable security
✗ Very hard to understand the extend of the leakage

Rely on cryptanalysis: leakage-abuse attacks
✗ Maybe not the best adversary
✓ ‘Real world’ implications

Evaluating the security

State-of-the-art schemes leak the number of results of
a query
➡ Enough to recover the queries when the adversary

knows the database [CGPR’15]
➡ Counter-measure: padding (it has a cost)

