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Searchable Encryption
Outsource data 

Securely 

Keep search functionalities 

Aimed at efficiency 

… we have to leak some information … 

… and this can lead to devastating attacks



An example: property 
preserving encryption

Deterministic encryption, Order Preserving Encryption 

✓ Legacy compatible (works on top of unencrypted DB) 

✓ Very efficient 

✗ Not secure in practice (frequency analysis)
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Leakage

Simulator

Security of SE
Everything the server learns can be computed from the leakage

Real Client Adversary

? ? ?

  Ideal World



Examples of leakage

After a search, the user will access the matching 
documents. This will reveal the search result. 

When the user searches for the same keyword twice, 
the server might learn that the query has been 
repeated.   

In both cases, trying to get rid of this leakage is 
expensive



An explicit tradeoff between 
security and performance

Oblivious RAM lower bound: if one wants to hide the 
access pattern to a memory of size N, the 
computational overhead is 
 

A similar lower bound exists for searchable encryption: 
a search pattern-hiding SE incurs a search overhead of
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Constructing encrypted 
databases
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File injection attacks [ZKP’16]

Insert purposely crafted documents in the DB  
(e.g. spam for encrypted emails) 

log |W| injected documents
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Active adaptive attacks
These adaptive attacks use the update leakage 

We need SE schemes with oblivious updates

Forward Privacy



Forward privacy
Forward private: an update does not leak any information 

Secure online build of the EDB 

Only one scheme existed so far [SPS’14] 

➡ ORAM-like construction 

✗ Inefficient updates 

✗ Large client storage



How to achieve forward 
privacy efficiently?
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Naïve solution: STi(w) = F(Kw,i), send all STi(w)’s 

✗ Client needs to send n tokens 

Use a trapdoor permutation  
(client has the secret key, server has the public key, 
and cannot compute the inverse)
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Storage: 
Client:  # distinct keywords 
Server: # database entries



Σoφoς

Forward private index-based scheme 

Very simple 

Efficient search (IO bounded) 

Asymptotically efficient update  
In practice, very low update throughput  
4300 updates/s — 20x slower than other work



Another path towards 
forward privacy
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Can we restrict the evaluation of F(Kw,.) on [1,n]?
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Range-Constrained PRF

Consider the condition Cn: 

Cn(x) = true if and only if 1≤ x ≤ n (range condition) 

Kn = Constrain(K,Cn) can only be used to  
evaluate F on [1,n]
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Diana
Instantiate the CPRF F with a tree-based 
PRF construction 

Asymptotically less efficient than Σoφoς 

In practice, a lot better. Always IO bounded 
(for both searches and updates) 

Search: <1µs per match (on RAM)  
Update: 174 000 entries per second  
              (4300 for Σoφoς)



Can we do better?

Similarly to the ORAM lower bound, we can show that 
the computational overhead of an update for a 
forward-private scheme is 

Σoφoς is optimal (constant-time update, σ = |W|)
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Deletions



Deletions

How to delete entries in an encrypted database? 

Existing schemes use a ‘revocation list’ 

Pb: the deleted information is still revealed to the server 

Backward privacy: ‘nothing’ is leaked about the 
deleted documents



Backward privacy

Baseline: the client fetches the encrypted lists of inserted 
and deleted documents, locally decrypts and retrieves 
the documents. 
✓ Optimal security 
✗ 2 interactions  
✗ Complexity (communication & computation) :  

   # insertions (vs. # results)



Backward privacy with 
optimal updates & comm.
Could we prevent the server from decrypting some 
entries? 

Puncturable Encryption [GM’15]: Revocation of 
decryption capabilities for specific messages
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Backward privacy with 
optimal updates & comm.

DecryptK T T’

  T’’

D Decrypt 🚫

T

Could we prevent the server from decrypting some 
entries? 

Puncturable Encryption [GM’15]: Revocation of 
decryption capabilities for specific messages
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Janus

Not so good: 

✗O(nw.dw) search comp. 

✗Uses pairings (not fast)

Good: 

✓Forward & backward-private 

✓Optimal update complexity 

✓Optimal communication



Implementation of SE

Client Server gRPC

Σoφoς Diana Janus RocksDB

PRF Hash TDPEnc. …
libsodium 
mbedTLS

Relic



OpenSSE

Goal: fast and secure implementation of SE schemes 

10 700 C/C++ LoC (crypto: 6500, schemes: 4200) 

Open Source: opensse.github.io 

And its documented !!! (at least for the crypto)

https://opensse.github.io


Other works on searchable 
encryption 

Verifiable SSE: check that the results returned by the 
server are correct. Constructions and lower bounds 

Analysis of recent attacks (leakage-abuse attacks) that 
only use the leakage to break the security of schemes. 
Proposed countermeasures.



Conclusion
Forward privacy 

Updates do not leak information about the past 
events 
Two efficient constructions Σoφoς and Diana 

Backward privacy 
Deletions are not recoverable by the server 
Janus: backward privacy with optimal 
communication



Conclusion

SE involves very diverse topics: theoretical CS, 
cryptanalysis, cryptographic primitives, systems, … 

Real world cryptography, with great impact



Publications
Searchable Encryption: 

[B Fouque Pointcheval - ePrint 16]: Verifiable Dynamic Symmetric Searchable Encryption: 
Optimality and Forward Security 

[B - CCS 16]: Σoφoς: Forward Secure Searchable Encryption 

[B Minaud Ohrimenko - CCS 17]: Forward and Backward Private Searchable Encryption from 
Constrained Cryptographic Primitives 

[B Fouque - ePrint 17]: Thwarting Leakage Abuse Attacks against Searchable Encryption – A 
Formal Approach and Applications to Database Padding 

Other: 

[B Popa Tu Goldwasser - NDSS 15]: Machine Learning Classification over Encrypted Data. 

[B Sanders - AsiaCrypt 16]: Trick or Tweak: On the (In)security of OTR’s Tweaks





Verifiable SE
The server might be malicious: return fake results, 
delete real results, … 

The client needs to verify the results 



Verifiable SE
This is not free: lower bound (derived from [DNRV’09]) 

If client storage is less than |W|1-ε, search complexity 
has to be larger than log |W| 

The lower bound is tight: using Merkle hash trees and 
set hash functions 

Many possible tradeoffs between search & update 
complexities
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Crypto vs. Seek time 

The magic world of searchable encryption: 

Symmetric crypto is free 

Asymmetric crypto is not overly expensive 

A lot of the cost comes from the non-locality of 
memory accesses



Locality vs. Caching

The OS is ‘smart’: it caches memory. 

Be careful when you are testing your construction on 
small databases 

Once the database is cached, non locality disappears 

Beware of the evaluation of performance



Evaluating the security

Use the leakage function from the security definitions 
✓ Provable security 
✗ Very hard to understand the extend of the leakage 

Rely on cryptanalysis: leakage-abuse attacks 
✗ Maybe not the best adversary 
✓ ‘Real world’ implications



Evaluating the security

State-of-the-art schemes leak the number of results of 
a query 
➡ Enough to recover the queries when the adversary 

knows the database [CGPR’15] 
➡ Counter-measure: padding (it has a cost)


