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Security vs. Efficiency

Searchable encryption is all about a
security-performance tradeoff

Nothing comes for free. Ever!
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Efficiency

Many possible measurements:
• Computational complexity
• Communication complexity
• Number of interactions
• Size of the encrypted database
• Size of the client’s state
• Memory locality & read efficiency
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Security

We can evaluate the security
• formally: from the leakage in the security proofs

• practically: from actual attacks (e.g. leakage-abuse
attacks)
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This presentation

Lower bounds on the efficiency of:
• static searchable encryption schemes hiding the
repetition of search queries;

• dynamic searchable encryption schemes with
forward-private updates;

• dynamic searchable encryption schemes secure
against malicious adversaries.
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This presentation

We restricted ourselves to:

• symmetric searchable encryption (SSE)
• single-keyword search queries
• database structure: atomic keyword/document pairs
(a.k.a. entries)

Raphael Bost SE Efficiency Lower Bounds ESSA2 6 / 34



Security model

• Indistinguishability-based security definition: two
executions with the same leakage cannot be
distinguished by an adversary

• Only the non-adaptive version of the definition is
needed here
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Notations

• N = |DB|: total number of entries
• K : number of distinct keywords
• |DB(w)| = nw : number of entries matching w
• aw : number of entries matching w inserted in the
database

• H = (DB, r1, . . . , ri) : query history (ri can be a
search query, or an update query)
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Schemes hiding the search pattern

• Static schemes only revealing the number of results
of a query (hides the repetition of queries — the
search pattern)

• Related to ORAM (# results of each query is 1)
Called File-ORAM in [ACN+17]

• ORAM lower bound [GO96]: Ω

(
logN

log σ

)
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Lower bound on search-pattern-hiding SSE

Theorem
Let Σ be a static SSE scheme leaking (N ,K ) and
|DB(w)|. Then the complexity of the search protocol is

Ω

(
log
(
N(H,w)

nw

)
log |σ| · log log

(
N(H,w)

nw

))

where

N(H ,w) = |DB| −
i∑

j=1
|DB(wj)|6=|DB(w)|

|DB(wj)|.

Raphael Bost SE Efficiency Lower Bounds ESSA2 10 / 34



Explanations

• Suppose the client queries w and w’ with
|DB(w)| 6= |DB(w ′)|. The adversary knows from the
leakage that w 6= w ′.

• As w 6= w ′, the adversary knows that the accessed
entries will be different. Hence the term in N .

• The order in which the entries are touched does not
matter. Hence the binomial coefficient.

• The proof essentially proceeds an in [GO96].
• The log log term in an artefact.
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Tightness of the lower bound

w0 2
w1 3
w2 1
w3 56
w4 3
...

...

OMap for w s.t. |DB(w)| = 1

OMap for w s.t. |DB(w)| = 2

OMap for w s.t. |DB(w)| = 3

· · ·

OMap for w s.t. |DB(w)| = 56

· · ·

Query complexity of an OMap of size n: O(log n).
The search complexity of the SE construction is O(logK ).
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Tightness of the lower bound

The previous construction breaks the lower bound when
K � N (common case).
During setup, the profile of the database is leaked:
(Ki)i=1 where Ki = #{w s.t. |DB(w)| = i}.

With a small additional leakage, we can break the lower
bound on SP-hiding SSE.
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Forward Privacy

File injection attacks [ZKP16]
Leaking information about the updated keywords leads to
devastating adaptive attacks.

Forward privacy
An update does not leak any information on the updated
keywords (often, no information at all)

Introduced in [SPS14], must have security feature for
modern dynamic schemes
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The cost of forward privacy

Scheme Computation Client FP
Search Update Storage

[CJJ+14] O(aw ) O(1) O(1) 7

[SPS14] O(aw + logN ) O
(

log2 N
)
O(Nα ) 3

Supports
O
(
nw log3 N

)
deletions well

Σoφoς O(aw ) O(1) O(K ) 3 TDP
[EKPE18] O(aw ) O(1) O(K ) 3

}
write during
search[KKL+17] O(aw ) O(1) O(K ) 3

Diana O(aw ) O(log aw ) O(K ) 3 CPRF
FAST O(aw ) O(1) O(K ) 3
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Lower bound on forward-private SE

Theorem
Let Σ be a forward-private SSE scheme. Then the sum of
the amortized complexity of the search and update
protocols is

Ω

(
logK

log |σ| · log logK

)
Fragile proof
There might be some issues with the proof.
Details are important (thanks Tarik!).
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Tightness of the FP lower bound

• Σoφoς , KKLPK, EKPE and FAST show that the
lower bound is tight (|σ| = K ).

• FAST shows that the lower bounds can be reached
relying only on a PRF, without rewriting the DB
during the search algorithm to ‘cache’ the results.

• Outsource the client’s counter map using an oblivious
map data structure.
|σ| = O(1), O(logK ) search & update complexity.

• Open question: is there a middle point?
e.g. |σ| = O

(√
K
)
& O(1) update complexity.
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Verifiable Searchable Encryption

The security against malicious adversaries can be split in
two parts.

Confidentiality
No information leaks about the DB/query.
Often simple (single interaction).

Soundness (integrity)
The server cannot return incorrect results.
Does not depend on the leakage.
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Memory checking

Problem
How to outsource memory to an untrusted party, while
ensuring authenticity and using limited trusted local
storage?

Lower bound [DNRV’09]: a memory checker outsourcing n
values, with |σ| < n1−ε for some ε > 0 has computational
overhead

Ω

(
log n

log log n

)
.
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VSSE lower bound

Using a simple reduction from memory checking, we get a
lower bound on verifiable SSE schemes.

Theorem
Let Σ be a dynamic verifiable SSE scheme with
|σ| < K 1−ε for some ε > 0. Then the computational
complexity of the search or of the update protocol is

Ω

(
logK

log logK

)
.
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A practical VSSE lower bound

Using a less generic result on hash-based memory checker
from [TT05], we can improve the lower bound to

Ω

(
log

K

|σ|

)
.
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Why is this interesting?

• This lower bound does not depend on the leakage.
• If a scheme, hides the search pattern, or is
forward-private, we should be able to get verifiability

for free: Ω

(
logK

log |σ| · log logK

)
vs. Ω

(
log

K

|σ|

)
.

• And we can . . .
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Set hash functions [CDvD+03]

Some kind of incremental hashing [BM97]:
• The value of the hash does not depend on the order
• It is easy to compute H(A ∪ {x}) from H(A) and x .
More generally H(A ∪ B) = H(A) +H H(B)

• It is easy to compute H(A \ {x}) from H(A) and x .
More generally H(A \ B) = H(A)−H H(B)
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Collision resistance of set hash functions

It must be hard for an adversary to find two different sets
hashing to the same value.

Definition of collision resistance

Advcol
H,A(λ) = P[K

$← K, (S , S ′)← A(K ) :

S 6= S ′ ∧HK (S) ≡HK
HK (S ′)]

H is collision resistant if Advcol
H,A(λ) is negligible in 1λ.

Efficiently instantiable using elliptic curves [MSTA16].
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Generic VSSE

Two simple ideas:
1. For each keyword w, store H(DB(w)) in a table T

When searching for w and returned the result set R,
check that H(R) = T.
When updating on w, update H(DB(w))
incrementally.

2. Outsource T using a verifiable oblivious map
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Generic VSSE

• Additional client storage: O(1)

• Additional server storage: O(K )

• Computational overhead: O(logK + |DB(w)|)
• Additional leakage: K (from the size of the OMap)
Can be applied to any forward-private scheme to
make it verifiable
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Conclusion

• Three lower bounds showing the tradeoffs between
security and efficiency

• They are very fragile. Can they be extended to a
more general setting?

• Forward-private schemes: is there a lower bound on
the locality? Which parameter does it involve?
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Slides: https://r.bost.fyi/slides/ESSA2.pdf
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