Trick or Tweak
 On the (In)security of OTR's Tweaks

Raphael Bost ${ }^{1,2}$ Olivier Sanders ${ }^{3}$

${ }^{1}$ Direction Générale de l'Armement - Maîtrise de l'Information
${ }^{2}$ Université de Rennes 1
${ }^{3}$ Orange Labs

Asiacrypt 2016, Hanoi

Offset Two Rounds (OTR)

Tweakable Blockcipher (TBC) [LRW02]

Add a public input to a blockcipher - the tweak - to add variability.
Each tweak $T \in \mathcal{T}$ (the tweak space) yields an independent pseudo-random permutation.

Tweakable Blockcipher (a.k.a tweakable PRP)

The $T \in \mathcal{T}$ indexed permutation family $\widetilde{E}_{K}(T,$.$) is indistinguishable from$ a random permutation family $\pi(T,$.

$$
\mathbb{P}\left[K \stackrel{\$}{\leftarrow} \mathcal{K}: \mathcal{A}^{\tilde{E}_{K}(., .)} \Rightarrow 1\right]-\mathbb{P}\left[\widetilde{\pi} \stackrel{\S}{\leftarrow} \operatorname{Perm}(\mathcal{T}, n): \mathcal{A}^{\widetilde{\pi}(., .)} \Rightarrow 1\right] \leq \operatorname{negl}(\lambda)
$$

OTR Encryption (1/2)

OTR Encryption (2/2)

OTR's security

Theorem (Theorem 3 of [Min14])

If \widetilde{E} is a tweakable PRP, OTR is CPA-secure (confidentiality) and INT-CTXT-secure (unforgeability).

Instantiating the TBC

Remark

We are working in $\mathbb{F}_{2^{n}}$ represented as $\mathbb{F}_{2}[X] /(P(X))$ with P is a degree n primitive polynomial in \mathbb{F}_{2}.

- Use the XE construction: $\widetilde{E}_{K}^{N, i, j}(M)=E_{K}\left(M+\Delta_{i, j}^{N}\right)$
- In $[\operatorname{Rog} 04]: \Delta_{i, j}^{N}=X^{i}(X+1)^{j} \delta$ with $\delta=E_{K}(N)$

$$
\begin{aligned}
\Delta_{i+1, j}^{N} & =X \cdot \Delta_{i, j}^{N} \\
\Delta_{i, j+1}^{N} & =(X+1) \cdot \Delta_{i, j}^{N}
\end{aligned}
$$

Instantiating the TBC

Remark

We are working in $\mathbb{F}_{2^{n}}$ represented as $\mathbb{F}_{2}[X] /(P(X))$ with P is a degree n primitive polynomial in \mathbb{F}_{2}.

In OTRv1-v2 [Min14], for efficiency, an other masking scheme is used:

$$
\begin{aligned}
\Delta_{i, b}^{N} & =\left(X^{i+1}+b\right) \delta \\
\Delta_{\ell, b_{1}, b_{2}}^{*, N} & =\left[(X+1) X^{\ell+1}+X \cdot b_{1}+b_{1}+b_{2}\right] \delta \\
\Delta_{i+1,0}^{N} & =X \cdot \Delta_{i, 0}^{N} \\
\Delta_{i, 1}^{N} & =\Delta_{i, 0}^{N}+\delta
\end{aligned}
$$

The flaw

Lemma (Lemma 1 of [Min14])

The TBC is indistinguishable from a tweakable PRP.
The proof of this lemma relies on the following claim

Claim

$$
\text { Let } \begin{aligned}
\mathcal{S}_{1}(\delta)=\{ & \left.X^{i+1} \delta,\left(X^{i+1}+1\right) \delta,\right\} \\
& \cup\left\{\left(X^{i+2}+X^{i+1}+b_{1} X+b_{2}\right) \delta\right\}_{i=1, b_{1} \in\{0,1\}, b_{2} \in\{0,1\}}
\end{aligned}
$$

The elements of $\mathcal{S}_{1}(\delta)$ are pairwise different.

The flaw

Lemma (Lemma 1 of [Min14])

The TBC is indistinguishable from a tweakable PRP.
The proof of this lemma relies on the following claim

Claim

$$
\text { Let } \begin{aligned}
\mathcal{S}_{1}(\delta)=\{ & \left.X^{i+1} \delta,\left(X^{i+1}+1\right) \delta,\right\} \\
& \cup\left\{\left(X^{i+2}+X^{i+1}+b_{1} X+b_{2}\right) \delta\right\}_{i=1, b_{1} \in\{0,1\}, b_{2} \in\{0,1\}}
\end{aligned}
$$

The elements of $\mathcal{S}_{1}(\delta)$ are pairwise different.

Our attack

This is not true in general!

The trick

- In [Rog04], bound i and j, so that $i+\alpha j$ are all different, with $\alpha=\log _{X}(X+1)$
$\Rightarrow\left\{X^{i}(X+1)^{j}\right\}$ are pairwise distinct.

The trick

- In $[\operatorname{Rog} 04]$, bound i and j, so that $i+\alpha j$ are all different, with

$$
\begin{aligned}
\alpha & =\log _{x}(X+1) \\
& \Rightarrow\left\{X^{i}(X+1)^{j}\right\} \text { are pairwise distinct. }
\end{aligned}
$$

- In [Min14], we cannot show that, for some q, elements are pairwise distinct in

$$
\left\{X^{i+1}, X^{i+1}+1\right\} \cup\left\{X^{i+2}+X^{i+1}+b_{1} X+b_{2}\right\}_{1 \leq i \leq q,\left(b_{1}, b_{2}\right) \in\{0,1\}^{2}}
$$

The trick

- In $[\operatorname{Rog} 04]$, bound i and j, so that $i+\alpha j$ are all different, with

$$
\begin{aligned}
\alpha & =\log _{X}(X+1) \\
& \Rightarrow\left\{X^{i}(X+1)^{j}\right\} \text { are pairwise distinct. }
\end{aligned}
$$

- In [Min14], we cannot show that, for some q, elements are pairwise distinct in

$$
\left\{X^{i+1}, X^{i+1}+1\right\} \cup\left\{X^{i+2}+X^{i+1}+b_{1} X+b_{2}\right\}_{1 \leq i \leq q,\left(b_{1}, b_{2}\right) \in\{0,1\}^{2}}
$$

- If $P(X)=X^{n}+X^{j}+1$, there is a collision between X^{n} and $X^{j}+1$ in $\mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] /(P(X))$.

The trick

- In $[\operatorname{Rog} 04]$, bound i and j, so that $i+\alpha j$ are all different, with

$$
\begin{aligned}
\alpha & =\log _{x}(X+1) \\
& \Rightarrow\left\{X^{i}(X+1)^{j}\right\} \text { are pairwise distinct. }
\end{aligned}
$$

- In [Min14], we cannot show that, for some q, elements are pairwise distinct in

$$
\left\{X^{i+1}, X^{i+1}+1\right\} \cup\left\{X^{i+2}+X^{i+1}+b_{1} X+b_{2}\right\}_{1 \leq i \leq q,\left(b_{1}, b_{2}\right) \in\{0,1\}^{2}}
$$

- If $P(X)=X^{n}+X^{j}+1$, there is a collision between X^{n} and $X^{j}+1$ in $\mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] /(P(X))$.
- For more than half of $n \leq 10000$, there is an irreducible trinomial P.

For actual block sizes $(n=64,128) ?$

- If $8 \mid n, \mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] /(P(X))$ with P with at least 5 non-zero coefficient $\left(P(X)=X^{n}+X^{j_{1}}+X^{j_{2}}+X^{j_{3}}+1\right)$.
\Rightarrow no immediate collision in general.

For actual block sizes $(n=64,128) ?$

- If $8 \mid n, \mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] /(P(X))$ with P with at least 5 non-zero coefficient $\left(P(X)=X^{n}+X^{j_{1}}+X^{j_{2}}+X^{j_{3}}+1\right)$.
\Rightarrow no immediate collision in general.
- For SW/HW efficiency, we usually choose P such that its non-zero coefficients are close to each other, preferably in the least significant bytes.

$$
\begin{aligned}
P_{64}(X) & =X^{64}+X^{4}+X^{3}+X+1 \\
P_{128}(X) & =X^{128}+X^{7}+X^{2}+X+1
\end{aligned}
$$

For actual block sizes $(n=64,128) ?$

- If $8 \mid n, \mathbb{F}_{2^{n}}=\mathbb{F}_{2}[X] /(P(X))$ with P with at least 5 non-zero coefficient $\left(P(X)=X^{n}+X^{j_{1}}+X^{j_{2}}+X^{j_{3}}+1\right)$.
\Rightarrow no immediate collision in general.
- For SW/HW efficiency, we usually choose P such that its non-zero coefficients are close to each other, preferably in the least significant bytes.

$$
\begin{aligned}
P_{64}(X) & =X^{64}+X^{4}+X^{3}+X+1 \\
P_{128}(X) & =X^{128}+X^{7}+X^{2}+X+1
\end{aligned}
$$

- For $n=64$ with the usual P, we have a collision of the type $X^{i}=X^{j+1}+X^{j}+X+1:$

$$
X^{64}=X^{4}+X^{3}+X+1
$$

Consequences

Problem

There is a flaw in the proof of OTR, even for practical parameters.

Does the confidentiality of OTR break?
Does the unforgeability of OTR break?

Typology of collisions

$$
\left\{X^{i+1}, X^{i+1}+1\right\}_{1 \leq i \leq q} \cup\left\{X^{i+2}+X^{i+1}+b_{1} X+b_{2}\right\}_{1 \leq i \leq q,\left(b_{1}, b_{2}\right) \in\{0,1\}^{2}}
$$

There are three types of collision among the tweaks' polynomials:

$$
\begin{align*}
X^{i} & =X^{j}+1 \tag{1}\\
X^{i} & =X^{j+1}+X^{j}+r(X) \tag{2}\\
X^{i+1}+X^{i} & =X^{j+1}+X^{j}+r(X) \tag{3}
\end{align*}
$$

with $r(X) \in\{0,1, X, X+1\}$.

Attacks

Out attack

$$
\text { Type } 1\left(X^{i}=X^{j}+1\right)
$$

Break confidentiality and unforgeability.
Type $2\left(X^{i}=X^{j+1}+X^{j}+r(X)\right)$
Break confidentiality if $i<j$. Break unforgeability o/w.
Type $3\left(X^{i+1}+X^{i}=X^{j+1}+X^{j}+r(X)\right)$

Break unforgeability.

Idea: use the collision to have relations between block cipher's inputs and create collisions on the outputs.
Only one query to the encryption oracle, with a message of $\max (i, j)$ blocks. For $n=64$: 1 kB message.

$n=128$ in practice

Usually, for $n=128$, we choose

$$
P(X)=X^{128}+X^{7}+X^{2}+X+1
$$

There is no trivial collision.

Remark

This is not true for all irreducible P of degree 128.
Ex: $P(X)=X^{128}+X^{127}+X^{61}+X^{60}+1$
Can we find a collision among tweaks polynomials?

In search for lost collision

- We are only interested in collisions with i and $j<2^{64}$: the security proof of OTR only holds up to the birthday bound.

In search for lost collision

- We are only interested in collisions with i and $j<2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}$.

In search for lost collision

- We are only interested in collisions with i and $j<2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}$.
- Our only hope: exhaustive search.

In search for lost collision

- We are only interested in collisions with i and $j<2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}$.
- Our only hope: exhaustive search.
- Generate, sort and match tweak polynomials (Embarrassingly parallelizable).

In search for lost collision

- We are only interested in collisions with i and $j<2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}$.
- Our only hope: exhaustive search.
- Generate, sort and match tweak polynomials (Embarrassingly parallelizable).
- Problem: requires $O\left(n 2^{n / 2}\right)$ memory and $O\left(n 2^{n / 2}\right)$ time ...

In search for lost collisions

We used time/memory tradeoffs to search for any collision with $i, j<2^{45}$.

Theorem

There is no collision among the tweaks polynomials for $i, j<2^{45}$ when $\mathbb{F}_{2^{128}}$ is defined as $\mathbb{F}_{2}[X] /\left(X^{128}+X^{7}+X^{2}+X+1\right)$.

The exhaustive search took 15 CPU-years using 3TB of RAM.

In search for lost collisions

We used time/memory tradeoffs to search for any collision with $i, j<2^{45}$.

Theorem

There is no collision among the tweaks polynomials for $i, j<2^{45}$ when $\mathbb{F}_{2^{128}}$ is defined as $\mathbb{F}_{2}[X] /\left(X^{128}+X^{7}+X^{2}+X+1\right)$.

The exhaustive search took 15 CPU-years using 3TB of RAM.

Question

What about $2^{45} \leq i, j$?

Probable collision before the birthday bound

- If tweak polynomials behaved like random polynomials, we should have a collision just before the birthday bound.
- For $n=32,64$, we enumerated the irreducible polynomials over \mathbb{F}_{2} of degree n and search for the lowest degree colliding polynomials.

First collision for $n=32$

First collision for $n=64$

Conjecture for $n=128$

Conjecture

There is no collision among the tweaks polynomials for $i, j<2^{60}$ when $\mathbb{F}_{2^{128}}$ is defined as $\mathbb{F}_{2}[X] /\left(X^{128}+X^{7}+X^{2}+X+1\right)$.

Conclusion

- OTRv2 is insecure for many block sizes.
- OTRv2 is secure for $n=128$ when the message length is limited to 2^{45} blocks.
- OTRv2 is probably secure for $n=128$ almost up to the birthday bound.
- OTRv3 fixes the issue (using masks from [Rog04]).

Thank you!

Paper: ia.cr/2016/234

