Trick or Tweak On the (In)security of OTR's Tweaks

Raphael Bost^{1,2} Olivier Sanders³

 $^1\textsc{Direction}$ Générale de l'Armement - Maîtrise de l'Information $^2\textsc{Universit\acute{e}}$ de Rennes 1

³Orange Labs

Asiacrypt 2016, Hanoi

(日) (周) (日) (日)

Offset Two Rounds (OTR)

- CAESAR submission by K. Minematsu (Eurocrypt '14)
- Rate-1 AE
- Tweakable blockcipher based
- Inverse-free version of OCB (only needs *E*, not *E*⁻¹)
- Two rounds Feistel construction
- Defined for any block size n.

Add a public input to a blockcipher - the tweak - to add variability.

Each tweak $T \in T$ (the tweak space) yields an independent pseudo-random permutation.

Tweakable Blockcipher (a.k.a tweakable PRP)

The $T \in \mathcal{T}$ indexed permutation family $\widetilde{E}_{\mathcal{K}}(T,.)$ is indistinguishable from a random permutation family $\pi(T,.)$

$$\mathbb{P}[\mathcal{K} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{K}: \mathcal{A}^{\widetilde{\mathcal{E}}_{\mathcal{K}}(.,.)} \Rightarrow 1] - \mathbb{P}[\widetilde{\pi} \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathsf{Perm}(\mathcal{T}, \textit{n}): \mathcal{A}^{\widetilde{\pi}(.,.)} \Rightarrow 1] \leq \operatorname{negl}(\lambda)$$

▲□ > < □ >

OTR Encryption (1/2)

Asiacrypt '16 4 / 22

- -

(日) (同) (三) (三)

OTR Encryption (2/2)

Asiacrypt '16 5 / 22

- 31

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Theorem 3 of [Min14])

If \tilde{E} is a tweakable PRP, OTR is CPA-secure (confidentiality) and INT-CTXT-secure (unforgeability).

Instantiating the TBC

Remark

We are working in \mathbb{F}_{2^n} represented as $\mathbb{F}_2[X]/(P(X))$ with P is a degree n primitive polynomial in \mathbb{F}_2 .

- Use the XE construction: $\widetilde{E}_{K}^{N,i,j}(M) = E_{K}(M + \Delta_{i,j}^{N})$
- In [Rog04]: $\Delta_{i,j}^N = X^i (X+1)^j \delta$ with $\delta = E_K(N)$

$$\Delta_{i+1,j}^{N} = X \cdot \Delta_{i,j}^{N}$$
$$\Delta_{i,j+1}^{N} = (X+1) \cdot \Delta_{i,j}^{N}$$

Raphael Bost, Olivier Sanders

Ε_K

 $\Delta_{i,j}^N$

Instantiating the TBC

Remark

We are working in \mathbb{F}_{2^n} represented as $\mathbb{F}_2[X]/(P(X))$ with P is a degree n primitive polynomial in \mathbb{F}_2 .

In OTRv1-v2 [Min14], for efficiency, an other masking scheme is used:

$$\Delta_{\ell,b_1,b_2}^N = (X^{i+1} + b)\delta$$
$$\Delta_{\ell,b_1,b_2}^{*,N} = [(X+1)X^{\ell+1} + X \cdot b_1 + b_1 + b_2]\delta$$

$$\Delta_{i+1,0}^{N} = X \cdot \Delta_{i,0}^{N}$$
$$\Delta_{i,1}^{N} = \Delta_{i,0}^{N} + \delta$$

Raphael Bost, Olivier Sanders

М

Eκ

 $\Delta_{i,i}^N$

(日) (周) (日) (日)

Lemma (Lemma 1 of [Min14])

The TBC is indistinguishable from a tweakable PRP.

The proof of this lemma relies on the following claim

Claim

Let
$$S_1(\delta) = \{X^{i+1}\delta, (X^{i+1}+1)\delta, \}$$

 $\cup \{(X^{i+2}+X^{i+1}+b_1X+b_2)\delta\}_{i=1,b_1\in\{0,1\},b_2\in\{0,1\}}$

The elements of $S_1(\delta)$ are pairwise different.

Lemma (Lemma 1 of [Min14])

The TBC is indistinguishable from a tweakable PRP.

The proof of this lemma relies on the following claim

Claim

Let
$$S_1(\delta) = \{X^{i+1}\delta, (X^{i+1}+1)\delta, \}$$

 $\cup \{(X^{i+2}+X^{i+1}+b_1X+b_2)\delta\}_{i=1,b_1\in\{0,1\},b_2\in\{0,1\}}$

The elements of $S_1(\delta)$ are pairwise different.

Our attack

This is not true in general!

Raphael Bost, Olivier Sanders

э

イロト イポト イヨト イヨ

• In [Rog04], bound *i* and *j*, so that $i + \alpha j$ are all different, with $\alpha = \log_X(X+1)$ $\Rightarrow \{X^i(X+1)^j\}$ are pairwise distinct.

E 990

< □ > < □ > < □ > < □ > < □ > < □ >

- In [Rog04], bound *i* and *j*, so that $i + \alpha j$ are all different, with $\alpha = \log_X(X+1)$ $\Rightarrow \{X^i(X+1)^j\}$ are pairwise distinct.
- In [Min14], we cannot show that, for some *q*, elements are pairwise distinct in

$$\{X^{i+1}, X^{i+1}+1\} \cup \{X^{i+2}+X^{i+1}+b_1X+b_2\}_{1 \le i \le q, (b_1, b_2) \in \{0, 1\}^2}.$$

< ロト < 同ト < ヨト < ヨ

- In [Rog04], bound *i* and *j*, so that $i + \alpha j$ are all different, with $\alpha = \log_X(X+1)$ $\Rightarrow \{X^i(X+1)^j\}$ are pairwise distinct.
- In [Min14], we cannot show that, for some *q*, elements are pairwise distinct in

$$\{X^{i+1}, X^{i+1}+1\} \cup \{X^{i+2}+X^{i+1}+b_1X+b_2\}_{1 \le i \le q, (b_1, b_2) \in \{0, 1\}^2}.$$

• If $P(X) = X^n + X^j + 1$, there is a collision between X^n and $X^j + 1$ in $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$.

= 900

< □ > < □ > < □ > < □ > < □ > < □ >

- In [Rog04], bound *i* and *j*, so that $i + \alpha j$ are all different, with $\alpha = \log_X(X+1)$ $\Rightarrow \{X^i(X+1)^j\}$ are pairwise distinct.
- In [Min14], we cannot show that, for some *q*, elements are pairwise distinct in

$$\left\{X^{i+1}, X^{i+1}+1\right\} \cup \left\{X^{i+2}+X^{i+1}+b_1X+b_2\right\}_{1 \le i \le q, (b_1, b_2) \in \{0, 1\}^2}.$$

- If $P(X) = X^n + X^j + 1$, there is a collision between X^n and $X^j + 1$ in $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$.
- For more than half of $n \leq 10000$, there is an irreducible trinomial *P*.

▲日▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー つくつ

For actual block sizes (n = 64, 128)?

• If 8|n, $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/(P(X))$ with P with at least 5 non-zero coefficient $(P(X) = X^n + X^{j_1} + X^{j_2} + X^{j_3} + 1)$.

 \Rightarrow no immediate collision in general.

Image: A matrix of the second seco

For actual block sizes (n = 64, 128)?

- If 8|n, 𝔽_{2ⁿ} = 𝔽₂[X]/(P(X)) with P with at least 5 non-zero coefficient (P(X) = Xⁿ + X^{j₁} + X^{j₂} + X^{j₃} + 1).
 ⇒ no immediate collision in general.
- For SW/HW efficiency, we usually choose *P* such that its non-zero coefficients are close to each other, preferably in the least significant bytes.

$$P_{64}(X) = X^{64} + X^4 + X^3 + X + 1$$
$$P_{128}(X) = X^{128} + X^7 + X^2 + X + 1$$

For actual block sizes (n = 64, 128)?

- If 8|n, 𝔽_{2ⁿ} = 𝔽₂[X]/(P(X)) with P with at least 5 non-zero coefficient (P(X) = Xⁿ + X^{j₁} + X^{j₂} + X^{j₃} + 1).
 ⇒ no immediate collision in general.
- For SW/HW efficiency, we usually choose *P* such that its non-zero coefficients are close to each other, preferably in the least significant bytes.

$$P_{64}(X) = X^{64} + X^4 + X^3 + X + 1$$
$$P_{128}(X) = X^{128} + X^7 + X^2 + X + 1$$

• For n = 64 with the usual P, we have a collision of the type $X^i = X^{j+1} + X^j + X + 1$:

$$X^{64} = X^4 + X^3 + X + 1$$

イロト イポト イヨト イヨト 二日

Problem

There is a flaw in the proof of OTR, even for practical parameters.

Does the confidentiality of OTR break?

Does the unforgeability of OTR break?

3

$$\left\{X^{i+1}, X^{i+1}+1\right\}_{1 \le i \le q} \cup \left\{X^{i+2}+X^{i+1}+b_1X+b_2\right\}_{1 \le i \le q, (b_1, b_2) \in \{0, 1\}^2}$$

There are three types of collision among the tweaks' polynomials:

$$X^i = X^j + 1 \tag{1}$$

$$X^{i} = X^{j+1} + X^{j} + r(X)$$
(2)

$$X^{i+1} + X^{i} = X^{j+1} + X^{j} + r(X)$$
(3)

with $r(X) \in \{0, 1, X, X + 1\}$.

(日) (周) (三) (三) (三) (○) (○)

Attacks

Out attack

Type 1 $(X^{i} = X^{j} + 1)$ Break confidentiality *and* unforgeability. Type 2 $(X^{i} = X^{j+1} + X^{j} + r(X))$ Break confidentiality if i < j. Break unforgeability o/w. Type 3 $(X^{i+1} + X^{i} = X^{j+1} + X^{j} + r(X))$ Break unforgeability.

Idea: use the collision to have relations between block cipher's inputs and create collisions on the outputs.

Only one query to the encryption oracle, with a message of max(i, j) blocks. For n = 64: 1kB message.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Usually, for n = 128, we choose

$$P(X) = X^{128} + X^7 + X^2 + X + 1.$$

There is no trivial collision.

Remark

This is not true for all irreducible P of degree 128. Ex: $P(X) = X^{128} + X^{127} + X^{61} + X^{60} + 1$

Can we find a collision among tweaks polynomials?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We are only interested in collisions with *i* and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.

- We are only interested in collisions with *i* and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}.$

- We are only interested in collisions with *i* and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}.$
- Our only hope: exhaustive search.

- We are only interested in collisions with *i* and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}.$
- Our only hope: exhaustive search.
- Generate, sort and match tweak polynomials (Embarrassingly parallelizable).

- We are only interested in collisions with *i* and $j < 2^{64}$: the security proof of OTR only holds up to the birthday bound.
- We cannot find such collisions by constructing a collision in $\mathbb{F}_{2^{64}}$ and then lifting it in $\mathbb{F}_{2^{128}}.$
- Our only hope: exhaustive search.
- Generate, sort and match tweak polynomials (Embarrassingly parallelizable).
- Problem: requires $O(n2^{n/2})$ memory and $O(n2^{n/2})$ time ...

We used time/memory tradeoffs to search for any collision with $i, j < 2^{45}$.

Theorem

There is no collision among the tweaks polynomials for $i, j < 2^{45}$ when $\mathbb{F}_{2^{128}}$ is defined as $\mathbb{F}_2[X]/(X^{128} + X^7 + X^2 + X + 1)$.

The exhaustive search took 15 CPU-years using 3TB of RAM.

We used time/memory tradeoffs to search for any collision with $i, j < 2^{45}$.

Theorem

There is no collision among the tweaks polynomials for $i, j < 2^{45}$ when $\mathbb{F}_{2^{128}}$ is defined as $\mathbb{F}_2[X]/(X^{128} + X^7 + X^2 + X + 1)$.

The exhaustive search took 15 CPU-years using 3TB of RAM.

Question

What about $2^{45} \leq i, j$?

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- If tweak polynomials behaved like random polynomials, we should have a collision just before the birthday bound.
- For n = 32, 64, we enumerated the irreducible polynomials over \mathbb{F}_2 of degree *n* and search for the lowest degree colliding polynomials.

First collision for n = 32

3

< □ > < □ > < □ > < □ > < □ > < □ >

First collision for n = 64

3

< □ > < □ > < □ > < □ > < □ > < □ >

Conjecture

There is no collision among the tweaks polynomials for $i, j < 2^{60}$ when $\mathbb{F}_{2^{128}}$ is defined as $\mathbb{F}_2[X]/(X^{128} + X^7 + X^2 + X + 1)$.

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

- OTRv2 is insecure for many block sizes.
- OTRv2 is secure for n = 128 when the message length is limited to 2^{45} blocks.
- OTRv2 is probably secure for n = 128 almost up to the birthday bound.
- OTRv3 fixes the issue (using masks from [Rog04]).

э.

Thank you!

Paper: ia.cr/2016/234

Raphael Bost, Olivier Sanders

Trick or Tweak

Asiacrypt '16 22 / 22

3

글 > : < 글 >